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Ahs?ract --In this paper, a concept of strong stability of an equilibrium 
point of an electric power system is introduced. It is shown that almost all 
stable equilibria of the standard transient stability model are strongly stable 
and that strong stability is a necessary and sufficient condition for the 
existence of a local energy-like Lyapunov function for all small perturba- 
tions of the nominal system. Such a Lyapunov function is explicitly 
constructed. A complete local analysis of the stability of power system 
equilibria in the presence of transfer conductances is given. 

I. INTR~DUOTI~N 

E FFICIENT analytical methods for the assessment of 
power system stability are actively being sought by 

industry. A great deal of effort has been devoted to the 
application of Lyapunov methods to this problem begin- 
ning with the work of Gless [l], and El-Abiad and 
Nagappan [2] and continuing to the present time (see, for 
example, the text by Pai [3] for a recent survey). The use of 
energy functions in constructing Lyapunov functions is 
especially appealing because of the physical insight pro- 
vided by them, and also because classical results obtained 
using energy-related Lyapunov function, such as the theo- 
rems of Lagrange and Cetaev [4], are among the sharpest 
available. 

The application of energy methods to power system 
stability analysis preceeds the introduction of Lyapunov 
techniques and begins with the papers of Magnusson [5] 
and Aylett [6]. The interest in energy methods was recently 
revived by Athay et al. [7] with the introduction of an 
energy-like Lyapunov function. Their promising results 
were followed by the introduction of many other energy- 
related Lyapunov functions. Among these, we note those of 
Bergen and Hill [8], Athay and Sun [9], Michel et al. [lo], 
and Narasimhamurthi and Musavi [ll]. 

The major variant among these recent investigations 
[7]-[ll] is the treatment of system loads. It is well known 
that load is a critical factor in power system stability. Thus 
it is most distressing that even the most elementary non- 
trivial load model, constant impedance to ground, has 
defied rigorous analysis using energy methods. The basic 
difficulty is that the incorporation of constant impedance 
loads with the usual generator and transmission-line mod- 
els employed in transient stability analysis leads to a 
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reduced bus admittance matrix with transfer conductances. 
The appropriate definition of energy functions in the pres- 
ence of transfer conductances is not at all clear. 

In fact, in a recent paper [12], Narasimhamurthi claims 
that no smooth modification of the lossless system tran- 
sient energy function to accommodate line losses (however 
small) can lead to a Lyapunov function. He carefully 
points out that his result does not mean that a Lyapunov 
function does not exist for a system with transfer conduc- 
tances, but, if it does it must be substantially different 
from an energy function. 

In this paper, we provide a complete local analysis of the 
stability of power system equilibria in the presence of 
transfer conductances. We will show that the conclusions 
of [12] are too pessimistic and that a local energy-like 
Lyapunov function does exist, in general, for stable equi- 
libria of systems with transfer conductances. In doing so, 
we will introduce the notion of strong stability of an 
equilibrium point of a power system. Roughly speaking, an 
equilibrium point is strongly stable if it is stable and 
remains stable under sufficiently small arbitrary perturba- 
tions of the reduced bus admittance matrix. It will be 
shown that almost all stable equilibria are strongly stable, 
and a simple characterization of the exceptional ones will 
be given. Our key result is that strong stability is a neces- 
sary and sufficient condition for the existence of a (local) 
energy-like Lyapunov function for arbitrary small per- 
turbations of the nominal system. We give an explicit 
construction for such a Lyapunov function. 

Because our results are local in character, they serve only 
to determine the stability of the equilibrium point and 
cannot be directly applied to determine the domain of 
stability. Nevertheless, our results suggest that there is 
good reason to believe that energy functions can play a 
useful role in resolving this problem. 

Transfer conductances give rise to nonconservative forces 
which are analogous to forces in mechanical systems called 
circulatory forces. The stability of mechanical systems un- 
der the influences of circulatory forces has been studied, 
most notably by Huseyin [13] and Leipholz [14]. Our point 
of view has been strongly influenced by these investigators 
and the text [13] provides excellent background for our 
analysis. The search for energy-like Lyapunov functions is 
closely related to questions of the existence of variational 
principles which produce a given set of differential equa- 
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tions. For an investigation of such issues in the spirit of the 
analysis provided here the reader is referred to Kwatny 
et al. [15] and Bahar and Kwatny [16]. 

II. MODELING AND DEFINITIONS 

Basic Assumptions 

The usual model of an electric power system used in 
analytical studies of power system transient stability [l]-[3], 
[7]-[ll], [21] is based on several fundamental assumptions, 
the most important of which are as follows. 

1) Each synchronous generator may be represented by a 
constant voltage behind its transient reactance. 

2) Mechanical power delivered to each turbine generator 
rotor is constant. 

3) Transmission lines may be modeled by a synchronous 
admittance (usually lossless). 

4) Loads may be characterized by a constant synchro- 
nous admittance to ground. 

Certainly, the most controversial aspect of the above 
assumptions is the load model. Constant admittance loads 
are perhaps the simplest nontrivial load model one can 
devise. Nevertheless, the resulting stability problem is sub- 
tle and, as yet, unsolved. Most analyses add the further 
restriction that the reduced bus admittance matrix be free 
of transfer conductances. This is tantamount to the as- 
sumption of lossless transmission lines and essentially re- 
stricts lossy loads to generator busses. Other models have 
also been used to circumvent the difficulties associated 
with constant admittance loads. These include constant 
power [8] and constant real power with voltage dependent 
reactive power [ll]. 

It should be noted that the addition of constant power 
loads does not in any substantial way complicate the ideal 
analysis of a system with constant admittance loads. A mix 
of constant power and constant admittance loads is prob- 
ably a reasonable first approximation in the majority of 
situations. It is essential that any theory of power system 
transient stability be capable of dealing with constant 
admittance loads. 

The chief deficiency of constant power and constant 
admittance loads is that they do not reflect the frequency 
dependence of load. To some extent, this is remedied by 
replacing the constant power assumption by constant 
torque as in [9]. It is generally believed that for the 
transient stability problem, load frequency effects are not 
of first-order significance. Nevertheless, even small 
frequency dependences have the potential to substantially 
affect power system stability. We will comment further on 
this point later. 

The generator model is another factor of some concern. 
It is well known that the constant voltage behind transient 
reactance ‘model follows from a simplification of Park’s 
equations based on the assumption of balanced operation, 
constant field flux, and fast asymptotically stable electrical 
transients. The resultant model is a single “swing equation” 

in torque form which is usually converted to power form. 
The conversion involves approximating certain rotor speed 
dependent terms by replacing actual speed by synchronous 
speed. It is the failure to account for small speed perturba- 
tion terms which has generated serious objections [22]. 

The Standard Model 

The assumptions delineated above lead to what we will 
call the standard model for power system transient stability 
analysis. Consider a system consisting of n generators. The 
equations of motion are 

M;is; + Diii = P, - Pei, i=1,2;*.,n (2.1) 

where 

Pei= 5 [~.jsin(6i-S,)+Hijcos(Si-Sj)] (2.2) 
j=l 
j#i 

Pi = P,,,i - EfG,, 

ej = E,E,B,,, Hij = E,E,G,, 

and where for the unit designated 
nomenclature is employed: 

‘mi mechanical power, 

(2.3) 
(2.4) 

by i, the following 

Gii driving point conductance, 
Ei constant voltage behind direct axis transient 

reactance, 
‘i generator angle deviation from synchronous 

reference, 
4 moment of inertia, 
D; damping constant, 
Bij(Gij) transfer susceptance (conductance) in the re- 

duced bus admittance matrix, 

where, in the absence of phase shifting transformers, B,,, Gij 
and hence Fij, Hij are symmetric. 

The equations can be written in the vector form 

M8+Dii+f(S)=P (2.5) 
where 

M=diag(M,) (2.6) 

D=diag(Di) (2.7) 

f,(S)= j~l[l$jsin(8i-S,)+Hijcos(8i-8j)]. 

)#i 

(2.8) 

There are several important properties associated with 
f(8). Obviously, f(8) is 2p-periodic in each of the vari- 
ables Si. Also f(8) has a translational symmetry. That is, 
f(8) is invariant under a uniform translation of the angles 

6,+S,+c, for i=l;..,n (2.9) 

where c is a constant. Another way of stating this is as 
follows. Let 1 be the n-vector 

l%[l;:.,l]‘. (2.10) 
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Then 

f(S) = f@ + 4 (2.11) 

for any constant c. 
It is easy to overlook the significance of the translational 

symmetry because it has such an obvious physical interpre- 
tation. It means simply that only the relative motions of 
the angular displacements are unique. Thus any equi- 
librium point of interest is actually a point in a one-dimen- 
sional manifold of equilibria in the-2n-dimensional state 
space and it only makes-sense to discuss the stability of the 
entire manifold. The usual remedy is to measure displace- 
ment relative to an arbitrary selected swing bus or to 
define the so-called center of angle coordinates. In any 
case, the state space is reduced to dimension 2n - 1 and the 
equilibrium manifold is collapsed to a point. 

When the system is conservative, i.e., in the absence of 
damping and transfer conductances, the translational sym- 
metry is directly associated with a conservation law or first 
integral: total angular momentum is constant. Thus a 
second reduction is obtainable so that a reduction of the 
state space to dimension 2n - 2 can be achieved [23]. 

As it turns out, this reduction is not restricted to purely 
conservative power systems. It is known (Willems [21]) that 
it works when uniform damping is present (in the absence 
of transfer conductances), an often used approgmation. It 
does not work, however, when arbitrary damping is pre- 
sent. The fact that various dimensions for the state space 
have been employed in the literature has sometimes made 
comparison between methods difficult. Willems [21] de- 
scribes the situation very well and builds a case for con- 
ducting the analysis in the 2n-dimensional state space. 

Another important fact is that under certain cir- 
cumstances the function f(S) is derivable from a potential 
function. That is, there exists a scalar function U(S), such 
that 

f(s)+. (2.12) 

It is important to know when this is the case. As is well 
known, a function f(S) is (directly) derivable from a 
potential if and only if its Jacobian is symmetric, i.e., 

(2.13) 

We can easily compute the Jacobian using (2.8): 

~-~jcos(Si-Sj)+Hijsin(Si-Sj), 

i+j 
af 

[I ( 
- = 
a6 ij l~i[&,cos(Si-S,)-Hijsin(Si-S,)], 

l#i 

\ 
i = j. 

(2.14) 

Moreover, the Jacobian can be separated into a symmetric 
part (af/as), plus an antisymmetric part (af/as), as 

follows: 

i # j 

(2.15) 

= Hijsin(Si - S,). 

Clearly, if there are no transfer conductances, then Hij = 0 
and the Jacobian is symmetric. Thus f (6) is derivable from 
a potential function, U(S), and U(S) is commonly inter- 
preted as the system potential energy. The fact that in the 
presence of transfer conductances f(S) is not directly 
integrable is the essential difficulty in analyzing such sys- 
tems. 

The asymmetry in the Jacobian of f (6) when transfer 
conductances are present means that f(S) includes non- 
conservative forces of a. type called circulatory forces in 
mechanics. Circulatory forces introduce effects that are 
quite different from dissipative forces and interact with 
dissipative forces in ways which are not intuitively obvious. 
In the absence of transfer conductances and dissipation the 
equations of motion (2.5) are conservative. 

Stability of Equilibria 

An equilibrium of (2.5) is a point S* E R” such that 
S* = 0. Thus equilibria are roots of the equation 

f(S)=P. (2.17) 

Let S* be a solution of (2.17). Then because of the 
translational symmetry of f(S) all points of the type 

s=s*+c1 (2.18) 

with c an arbitrary real constant are also equilibria. Conse- 
quently, any equilibrium point belongs to a one-dimen- 
sional manifold of equilibrium points. Consider the equi- 
librium manifold M in R” associated with the equilibrium 
point S*. 

iV=s*+span (1). (2.19) 

In the 2n-dimensional state space composed of points 
(w, S), the one-dimensional equilibrium manifold is the 
manifold 

if= {(~,s)lcd=o, SEM}. (2.20) 

We are interested in the stability of h and we use the 
usual definition of stability for an invariant set. Recall, 
that for any set i’? in R2n, an n-neighborhood U,,(i@) is 
the set of y in R2” such that dist(y, R) < n, [17]. 

Definition: An invariant set A of (2.5) is stable if for 
any e > ,O there is an n > 0 such that for any initial (o”, So) 
in U,(M), the corresponding solution (w(t), S(t)) is in 
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U,(k) for t >, 0. fi is asymptotically stable if it is stable 
and in addition each solution with initial state in U,(M) 
approaches k as t + cc. 

We will state two basic theorems which characterize the 
stability of invariant sets in terms of Lyapunov functions. 
First consider an autonomous system on an m-dimensional 
state space, and suppose that &? is a p-dimensional in- 
variant set. Furthermore, suppose that D can be char- 
acterized in the following way. There exists a continuous 
function g: R” --, R”-P such that 

St= {yER”‘lg(y)=O}. (2.21) 

Clearly, this is the situation of interest in power system 
stability, in which case m = 2n, p =l, and the map g is 
linear. 

Definition: A scalar function V(y) is said to be positive 
definite with respect to D in an open region U I Q if 

1) V(y) and its first partial derivatives are continuous 
in U. 
2) V(y)=Ofor yEQ. 
3) V(y) > W( g( y)), where W(g( y)) is an ordinary 
positive definite function on the Image of U c RP, 
under g. 

If, in addition, v< 0 on U, V is called a Lyapunou function 
(with respect to a). 

The following theorem is a simple extension of 
Lyapunov’s classic stability theorem. 

Theorem 2.1: If a Lyapunov function exists in some 
open neighborhood U of an invariant set Q, then Q is 
stable. 

A more subtle theorem was established by Willems [21] 
which provides conditions for asymptotic stability of G 
and also leads to a procedure for estimating the region of 
attraction for 9: 

Theorem 2.2: Suppose there exists a Lyapunov function 
V(y) on an open region U 1 Q such that 

1) V(y) = a on the boundary of U and V(y) < a in U.. 
2) g(y) is bounded in U. 
3) P does not vanish identically on any trajectory in U 
which does not belong entirely in G?. 

Then Q is asymptotically stable and every trajectory in U 
tends to Q as t-cc. 

Load Perturbations and Linearization 

We will be interested in the (local) stability of the 
equilibrium manifold under small but otherwise arbitrary 
perturbations in the system loads. This can be translated 
directly into small, arbitrary perturbations in the system 
admittance matrix which, in turn, alters the function f(S) 
as well as the power P appearing in (2.5). In the following 
paragraphs we develop the model to be used in our analy- 
sis. 

Consider some bounded neighborhood U of the equi- 
librium point S*. Let h(S) be any function defined on U 

with continuous first partial derivatives. We measure h by 
the norm ah (6) 

,h;= suplh(S)l+ sup - . I I (2.22) 
6EU 6EU as 

The function f(S) can always be written 

f(S)=K(S-S*)+g(S) 
where 

(2.23) 

,=af(s*) 
as (2.24) 

and 

g(S)=f(S)-zqs-s*). (2.25) 

To account for perturbation in loads, we replace f(S) by 
f(S) 

where 

j(s) = K(S - s*)+g(S) 

t?(S) = dS)+h@) 

(2.26) 

(2.27) 

and h(S) is any function defined on U with continuous 
first partial derivatives, with translational symmetry and 

Ihl G vo. (2.28) 

In general, P will also, change under load perturbations so 
that (2.5) is replaced by 

M8+ Db+f^(S)=P. (2.29) 

Equilibria are solutions of 

f(S) = B ‘(2.30) 

and a solution exist iff P E Range (i). We will assume that 
there exists a number q, > 0, and P,,,(h) so that an equi- 
librium S,(h) exists with S,(O) = S* for all h satisfying 
(2.28). Physically this means that the mechanical power can 
change to accommodate sufficiently small changes in load. 

The transformation S = So + x allows (2.29) to be written 

Mi+D~+(K+~)x++(x)=O (2.31) 

where 

am,) 
~(x)=b(s,+X)-~(So)-~“. (2.32) 

Note that G(X)= o( Ilxll) as l]xll +O. It follows that a 
linear approximation is obtained simply by omitting the 
term +(x). Furthermore, this analysis can be conducted at 
any point of the equilibrium manifold k since transla- 
tional symmetry is imposed on perturbations. Thus the 
same linear approximation is valid for the entire manifold. 

Finally, note that @(S,)/Sx is a small but arbitrary 
matrix except that it must possess translational symmetry. 
Thus, we replace it by eF where e is a small parameter and 
F is an arbitrary matrix possessing translational symmetry. 
Our linear model for study of the (local) stability of 
equilibria is then 

MZ+D.~+(K+EF)X=O. (2.33) 
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III. SYSTEMS WITH SMALLTRANSFER 
CONDUCTANCES 

Consider first the conservative system described by the 
differential equations 

lKt+ux=o (3.1) 
where 

M’=M>O 
U’=U (3.2) 

and the matrix U has a translational symmetry. We state 
the following elementary theorem without proof. 

Theorem 3. I: The equilibrium manifold of the conserva- 
tive system (3.1) is stable iff U> 0 with precisely one zero 
eigenvalue. 

Let I: denote the set of n x n real matrices having the 
property of translational symmetry and such that II FII G 1. 

Definition: We say that the equilibrium manifold of 
system (3.1) is strongly stable, if there exists an c0 > 0 such 
that the perturbed system 

MZ+(U+cF)x=O (3.3) 

is stable for each E, 1~1 < co, and each F E F. 

The following theorem characterizes strongly stable sys- 
tems. 

Theorem 3.2: The equilibrium manifold of system (3.1) 
is strongly stable iff U satisfies the conditions of Theorem 
1 and in addition, the eigenvalues of U are distinct. 

Proof: We will demonstrate sufficiency first. Assume 
that U has distinct, real roots, one of which is zero and the 
others positive. The zero root persists under perturbations 
because F as well as U has translational symmetry. Let + 
(X) denote the characteristic polynomial of U and let A* 
denote any one of the positive roots of U. Then, since X* is 
distinct we can 

+(Q = 0 - ~“)wq, P( X”) # 0. 

Note that 

l+‘(h)=P(A)t:(X-A*)P’(A) 

from which it follows that +‘(A*) # 0. Now, let A(h, c) 
denote the characteristic polynomial of (U + rF). Clearly, 
A( A*,)) = 0, and A’( X*, 0) = $‘( X*) f 0. Thus the implicit 
function theorem guarantees the existence of a unique, real 
valued, continuous function of g(c) and a positive number 
co such that 

A* = g(0) 

A(&),4 = 0, for 161 <co. 

It follows that for e sufficiently small, U + cF has a 
positive real root close to X*. 

To demonstrate necessity, note that since U has inde- 
pendent eigenvectors we need only consider U in the 
canonical form 

U=diag(A,;. *,X,-1,0). 

Suppose now, that U has repeated roots, then we can take 
X, = A,, so that 

U= diag(A,, A,, X,; . .,O). 

Now, take F to be 

F=diag([ -y ~],o;..,o). 

It is easy to demonstrate that U + c F has eigenvalues: 

A,+ jc,h,- j~,X3,~~-,h,-1,0. 

It follows from Theorem 1 that the system is unstable 
every E > 0. 

for 

Note that the requirements on U for stability of (3.1) 
admit repeated roots. Strong stability does not allow re- 
peated roots. This can be viewed as a very simple type of 
resonance exclusion. Our notion of strong stability, tailored 
for the power system stability problem, may be viewed as a 
special case of strong stability for linear reciprocal systems 
as defined by Hale [17]. The functions belonging to the 
perturbation class used in [17] are periodic in time. As may 
be expected, the resulting resonance conditions’are consid- 
erably more complex. In the context of power system 
stability, the use of time-varying (perhaps even stochastic) 
perturbations may be appropriate in view of the fact that 
the reduced bus admittance parameters change with load 
perturbations. Destabilization of the swing equations under 
stochastic perturbations has been observed by Loparo and 
Blankenship [18]. 

Our subsequent analysis depends on the notion of a 
symmetrizable matrix. 

Definition: A real matrix A is symmetrizable if it be- 
comes symmetric upon multiplication by a real, symmetric, 
positive definite matrix, S. 

We state without proof the following theorem of 
Taussky [ 191: 

Theorem 3.3: The following properties are equivalent: 
0 A’=SAS-1 with S’=S>O, 
0 A is similar to a symmetric matrix, 
0 A is the product of two symmetric matrices, one of 
which is positive definite, 
0 A is symmetrizable, 
0 A has real characteristic roots and a full set of eigen- 
vectors. 

The following corollary will prove useful. 

Corollary 3.1: If A is symmetizable by a matrix S so 
that SA = Q, then A has real characteristic roots and these 
roots have the same sign as those of Q. 

Proof: That A has real roots follows from Theorem 3. 
Note that since S > 0, we can write A = S’Q and S-’ can 
be factored S- ’ = TT’. Thus A = TT ‘Q and 

T-‘AT = T’QT 

so that A is similar to the symmetric matrix T’QT whose 
eigenvalues obviously have the same signs as those of Q. 
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Consider the system 

Mzk+Kx=O (3.4) 

where M’ = M > 0, as before, and K is real and has the 
translation symmetry property. We can characterize the 
stability of (3.4) as follows. 

Theorem 3.4: The equilibrium manifold of system (3.4) 
is stable iff there exists a symmetric, positive definite 
matrix, .S, such that SM-‘K is symmetric and satisfies the 
conditions of Theorem 1. 

Proof: Clearly (3.4) is unstable iff there exists an 
nontrivial (eigen)vector, u, satisfying 

[MA2+K]u=0 

with corresponding eigenvalue X having positive real part, 
or a repeated eigenvalue with zero real part and without a 
complete set of eigenvectors (we except the double root at 
the origin associated with the translational symmetry). It is 
easy to see that the roots of det { MX2 + K } are distributed 
symmetrically with respect to both the real and imaginary 
axes. It follows that the eigenvalues of a stable system must 
have zero real part and they must be associated with a 
complete set of eigenvectors (translational symmetry ex- 
cepted). Moreover, this implies that M-lK must have 
positive real eigenvalues except for the single zero eigen- 
value corresponding to the translational symmetry and a 
complete set of eigenvectors. It follows from Theorem 3 
that M-‘K is symmetrizable by a matrix S, and from 
Corollary 3.1 that SM-‘K is nonnegative with the only 
zero eigenvalue corresponding to the translational symme- 
‘try. Thus SM-‘K satisfies the conditions of Theorem 1. 

It follows from Theorems 2 and 4 that if (3.1) is strongly 
stable, i.e., stable for each FE F and c, 1~1 <Ed, there 
exists a symmetrizing matrix S(c) for M-‘(U + tF). We 
will show that, for each fixed F, S(c) can be chosen so that 
it is an analytic function of E in an open neighborhood of 
c = 0. Then, we will give a formal construction of S(e) as a 
power series in z about the point c = 0. 

Let Q(c) = M-l(U+ cF). S(c) is a symmetrizing matrix 
for K(E) iff it is a symmetric, positive definite matrix 
satisfying 

@(c)S(E)-s(Z)w(e) = 0. (3.5) 

Since Q(c) has a complete set of eigenvectors for 1~1 < co 
we can construct a transformation matrix T(E) from the 
eigenvectors of O(c), normalized to one, so that 

Q(c) =T(c)R(c)T-l(c)’ P-6) 

were 

A(E) =diag(hi(c)) (3.7) 

and hi(c) are the eigenvalues of K(c). Now, let I be any 
diagonal matrix with strictly positive elements. Define 

S(c) = T(c)rT’(c). (3.8) 

It is easy to verify by direct computation that S(E) as given 
by (3.8) satisfies (3.5). Furthermore, it is clearly symmetric 
and positive definite. 
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Analyticity of S(e) follows directly from the fact that the 
eigenvectors of ia(c) are analytic functions of E. The 
following theorem (Chow and Hale, [20, ch. 191) establishes 
this fact. 

Theorem 3.5: Let Q(E): R” -+ R” be an analytic func- 
tion of the parameter c. If X0 is a simple eigenvalue with 
corresponding eigenvector to of unit norm of Q(O), then 
there is a constant S > 0 such that for 1~) < 6, there are 
unique analytic functions h(e) with A(0) = ho and t(r) 

with t(0) = t,, such that h(c) is a simple eigenvalue of 
Q(E) and t(c) the corresponding eigenvector of unit norm. 

We are now in a position to develop S(c) as a power 
series in c. S(E) can be expressed in the form 

S(c)=S,+tS,+c2S2+ ... . (3.9) 

Since S(E) is symmetric, each Si, i =1,2,. a. must be 
symmetric. Using the requirement that S(e) as represented 
in (3.9) must symmetrize M-‘(U+ EF) for all z, 1~1 <co 
we obtain the symmetry conditions 

S,M-lU= UM-‘s 0 (3.10a) 

{ S,M-‘U+ SipIF} = { S,M-‘U+ SimlF}‘, i>l. 

(3.10b) 

It follows immediately from (3.10a) and the symmetry of U 
that we may take So = M. Equation (3.10b) can be rewitten 

UM-‘S, - S,M-‘U= Ai (3.11) 
where 

Aid S,-,F- F’S,-,. (3.12) 

Note that both sides of (3.11) are antisymmetric. Recall 
that M-‘U has distinct eigenvalues and can be diagonal- 
ized by a matrix T, so that 

M-‘U= TAT-’ (3.13) 
where 

A = diag(h,; . ., h,-i, X, = 0). 

Using (3.13), we can reduce (3.11) to the form 

A$ - $A = Ai (3.14) 

where 

Si = T&T ‘, Ai = TA\,T’. (3.15) 

The k, 1 element of Si is given by 

tAk - h,)[3i] k/= La,] kl’ (3.16) 

Note that Si is symmetric since Ai is antisymmetric. Let Qi 
denote the particular solution 

[‘ilkl= 
[Ailkl/(Xk-hl)? 

0, 
Then 

si = ai + ri (3.18) 

where Ii is an arbitrary diagonal matrix. It follows that 

So = M (3.19a) 

Si = T(iPi + Ti)T’, i>l. (3.19b) 
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Equation (3.19) explicitly provides the elements S, of the 
expansion (3.9). 

We are now in a position to prove, the following theo- 
rem. 

Theorem 3.6: If the equilibrium manifold of system (3.1) 
is strongly stable, then there exists S(r) and cc, such that 
the function 

v(a, x, c) = i’S(+? + xS(c)M-‘(u+ EF)X 

(3.20) 

is a Lyapunov function for (3.3) for all z, (6) < co. 

Proof: Assume cc, is chosen so that S(E) exists for all 
IE( <co. If (3.3) is p remultiplied by f’ S(r)M-’ and in- 
tegrated by parts it is easy to prove that (3.20) is a first 
integral of (3.3) so that p(i.) x, e) = 0 along trajectories of 
(3.3). Moreover, since i’S( > 0 for f # 0, it remains 
only to show that x’S(c)M-l(U+ EF)X z 0 where the 
equality holds only on the subspace of translational sym- 
metry. Since U; F both have translational symmetry it 
follows that x’S(c)M-r(U + eF)x = 0 for x E Span { 1) 
and sufficiently small c. 

Furthermore, we have 

x’S(c)M-‘(U+ cF)x = X’UX +0(r) 

so that x’s(c)M-l(U+ cF)x > 0 for x not in Span (1) 
and sufficiently small e. 

Remark: P’(?, x, c) is an energy-like Lyapunov function 
in the sense that I’($ x, c) depends smoothly on E and 
V(k, x, 0) corresponds to the energy (modulo a factor of 
l/2) of the conservative system. Moreover, V(& x, E) is the 
Jacobi first integral corresponding to the Lagrange system 
associated with (3.3). For a further elaboration of this 
point see [15], [16]. 

IV. SYSTEMS WITH LARGE TRANSFER 
CONDUCTANCES AND DISSIPATION 

It follows from Theorem 3.4 that the concept of strong 
stability and the results of Section III regarding existence 
of a local Lyapunov function apply to any stable, un- 
damped power system even with large transfer conduc- 
tances. This follows from the fact that the system of (3.4) 
can be converted to that of (3.1) by pre-multiplying (3.4) 
by S&.-i where S is the symmetrizing matrix of Theorem 
3.4. 

We will apply the same procedure to the damped system 

Mjt+Dk+Kx=O (4.1) 

or equivalently 

2 + M-‘Di + M- ‘Kx = 0 (4.2) 

where D’ = D > 0, and K has positive real eigenvalues 
except for precisely one zero eigenvalue corresponding to 
the translational symmetry. 

Definition: The system (4.1) or (4.2) is similar to a 
symmetric system of there exists a real transformation of 
coordinates y = TX, ITI # 0, such that the equations of 
motion have real symmetric coefficients in the new coordi- 
nate system. 

The following theorem was given by Inman [25]: 

Theorem 4.1: The system (4.2) is similar to a symmetric 
system iff M- ‘D and M-‘K have a common symmetriz- 
ing matrix. 

For a system similar to a symmetric system many well- 
known results apply. Let us state just one. 

Theorem 4.2: If the system (4.2) is simil$r to a symmet- 
ric system, then the equilibrium manifold M = {(i; x) Ii = 
0, x E Span {l}} asymptotically stable. 

Proof: The proof is a straightforward application of 
Theorem 2.2. Let S be the common symmetrizing matrix 
of Theorem 4.1 and define the candidate Lyapunov func- 
tion 

V(zi, x) = f’Si + x’(sM-‘K)x. 

Direct calculation leads to 
(4.3) 

v= -2Y(sM-‘D)k. (4.4) 

Clearly, r/ satisfies the positive definiteness requirements 
of Theorem 2.2, where 2 is the invariant set. Moreover, 
P< 0 and the inequality holds only for 2 = 0. But all 
solutions satisfying k = 0 lie entirely in j@. This completes 
the proof. 

One special case of interest is when M-‘D and M-‘K 
commute. This includes the case of uniform damping, that 
is M-ID = aI, (Y a positive scalar. When M-ID and 
M-‘K commute, they have a common set of eigenvectors 
(Gantmacher [24]) so that 

M-ID = T-‘ET > Z=diag(a,;..,u,) 

M-‘K = T-‘AT, A=diag(A,;.-,A.) (4.6) 

and thus the matrix S = T’T is a common symmetrizing 
matrix. It follows that the conclusions of Theorem 4.2 
apply. Thus a power system with transfer conductances 
which is stable in the absence of damping is asymptotically 
stable in the presence of commutative (specially uniform) 
damping. 

Suppose, however, that (4.2) is not similar to a symmet- 
ric system. We can still utilize the symmetrizing matrix, S, 
for M-‘K and rewrite (4.2) as 

S.Y + (C + G)i + SM-‘Kx = 0 w 

where 

C=;[(SM-‘D)+(SM-‘D)‘] 

G=+[(sM-9-(SM-‘D)‘] (4.8) 

so that C is symmetric and G is antisymmetric. 
We can characterize the stability of (4.7) in terms of the 

matrix C. 

Theorem 4.3: If C > 0 and the n* by n matrix 

1 
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has rank n, then the equilibrium manifold is asymptoti- 
cally stable. 

Remark: This theorem extends a result of Walker and 
Schmitendorf [27] to the case G # 0. It should be viewed as 
yet another variant of the classical Kelvin-Tait-Chetaev 
theorem [28]. 

Proof: Once again we use the Lyapunov function 
defined in (4.3). A simple computation shows that its time 
derivative along trajectories of (4.7) is 

p= -2i’Ci (4.9) 

which is negative semidefinite. Thus, by Theorem 2.2, it is 
now necessary to show that any solution of (4.7) satisfying 
f’Ci = 0 lies in the equilibrium manifold $2. We will do 
this by showing that under the hypothesis of the theorem 
only the trivial solution of (4.7) can satisfy this condition. 

Assume that 

i’Ci = 0 (4.10) 

on some nontrivial time interval (to, tr). Pre-multiply (4.7) 
by 2 to obtain 

iSaY + i’SM- ‘Kx = 0 (4.11) 

on (t,, ti). Now choose t, 1, < t < t,, and integrate by parts 
over (to, t) to reveal 

i’Si + x’SM-lKx = jhlS%dt + ji’SM-‘Kidt. 

The left-hand side is readily identifiable as 
necessary condition that V is nonincreasing is 

YSM-‘Ki = 0. 

(4.12) 

V. Thus a 

(4.13) 

It is easy to prove that this condition is sufficient as well. 
Since SM-lK has a one-dimensional null space spanned 
by the vector 1, the only solutions of (4.7) satisfying (4.13) 
are of the form l+(t) where (p(t) is a scalar function of t. 
Direct substitution into (4.7) and pre-multiplication by 1’ 
leads to the conclusions that 6 = 0, or equivalent X = 0. It 
follows that the right-hand side of (4.12) is constant. Thus 
a solution of (4.7) satisfies (4.10) iff it also satisfies (4.13). 

Note that (4.10) and (4.13) can be satisfied simulta- 
neously iff there exists a nontrivial vector q in the null 
spaces of both C and SM-‘K. The conditions of the 
theorem preclude this as will be proved in the following. 
Assume that there exists a nontrivial q in the null space of 
SM-‘K. We will show that it can not lie in the null space 
of C. Write the sequence of relations 

cq=cq ). 

C(SM-‘K)q = 0 
* 
* 

C(SM-‘K)“-lq = 0. (4.14) 

Since the coefficient matrix on the left has full rank by 
hypothesis, it has a left inverse. Let Z denote the first n 
columns of the left inverse. Then 

q = zcq. (4.15) 
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Clearly Cq # 0. It follows that (4.7) does not possess a 
nontrivial solution satisfying (4.10). 

If C is indefinite, then the equilibrium manifold may be 
unstable. The significance of this result arises from the fact 
that the definiteness properties of C do not directly follow 
from those of D. It is true that if D has positive real 
eigenvalues then so does C + G. However, C may not have 
positive real eigenvalues and it is C which determines the 
stability of (4.7). This observation was made by Huseyin 
and Hagedorn [26]. The important implication is that a 
power system, with transfer conductances, which is stable 
in the absence of dissipation may be destabilized by the 
addition of dissipation. 

In the absence of transfer conductances, the energy 
function represents the “perfect” Lyapunov function in the 
sense that it globally characterizes the stability properties 
of the system. The energy function itself precisely de- 
termines the domain of stability of the stable equilibrium 
manifold. It is not known whether a global counterpart to 
the energy function exists in the presence of transfer con- 
ductances. Consideration of this question is well beyond 
the scope of the present paper. However, in this regard, we 
can give an interpretation of a Lyapunov function pro- 
posed by DiCaprio [29], [30]. In view of the remark follow- 
ing Theorem 3.6, it is reasonable to conjecture that if a 
global energy-like potential function exists for a system 
with transfer conductances its local character will be that 
of (4.3). We can easily define a class of candidate Lyapunov 
functions which possess the following two properties: 1) 
they are locally equivalent to (4.3) and 2) they reduce 
globally to the conservative system energy function in the 
absence of transfer conductances. 

First, the function f(8) (recall the nonlinear model in 
Section II) can be nonuniquely separated 

f(6) = fdQ’+f*(~) (4.16) 

so that fr is integrable and f2 is not necessarily so, fr and 
f2 have the translational symmetry property of f, and fr 
reduces to f in the absence of transfer conductances. One 
simple choice for fr is obtained from f by setting the 
transfer conductances equal to zero. There are infinitely 
many others. One might conjecture that the best choice for 
fr is that whi h c renders the Jacobian of fi antisymmetric. 
It is not known whether such a decomposition exists. Let 
U,(S) represent a potential function from which fr is 
derivable. As before, denote an equilibrium point of inter- 
est by S* and define the potential function V,: 

V,(s,S)=ii’M~+U,(6)-U,(6*) 

+ { f*(S*)- P}‘(& a*>. (4.17) 

It follows directly from the construction of U, that V, has 
the desired global property, i.e., it reduces to the conserva- 
tive system energy function (modulo a factor of l/2) in the 
absence of transfer conductances. However, in general, it is 
not locally equivalent to (4.3). This is easily observed by 
rewriting (4.17) in local coordinates, x = 6 - 6* 

V,=x’Mx+U,(x+6*)-U,(S*)+{f,@*)-P}’x 

= X’MX + x’Ux +0( 11x11’) (4.18) 
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where 2U = XJ,( S *)/as. A simple remedy is to replace the 
quadratic terms in (4.18) by the right-hand side of (4.3) to 
obtain 

V(iS,6)=V,(S,S)+S’{S-M}S 

+(a-S*)‘{SM-‘K-U}(&6*) (4.19) 

where K is defined, as before,, by (2.24) and it is evident 
from our previous results that V collapses to V, in the 
absence of transfer conductances, so that the desired global 
property is preserved. The class of Lyapunov functions 
defined by (4.17) and (4.19) includes the Lyapunov func- 
tion proposed by DiCaprio. We await the publication of 
DiCaprio’s experience in the application of this Lyapunov 
function in order to judge its practical merits. 

V. CONCLUSIONS 

The main result of this paper is the proof that a local 
energy-like Lyapunov function exists for almost all stable 
electric power systems governed by the standard model, 
and including those with nonzero transfer conductances. 
Moreover, we have given a simple characterization of the 
exceptional stable systems and noted that the conclusions 
of Narasinhamurthi asserting nonexistence of energy-like 
Lyapunov functions is based on such an exceptional sys- 
tem. 

The distinguishing feature between those systems which 
possess an energy-like Lyapunov function and those that 
do not is the property of strong stability. We have intro- 
duced a notion of strong stability especially tailored for the 
power system stability problem. It is shown that strong 
stability is ‘a generic property of stable power systems, and 
that it is a necessary and sufficient condition for the 
existence of an energy-like Lyapunov function. In broad 
terms, strong stability is the ability of a stable power 
system to remain stable under sufficiently small, but arbi- 
trary perturbations in the reduced bus admittance matrix. 

The effect of dissipation on the stability of systems with 
transfer conductances has been examined. It has been 
shown that uniform damping belongs to a larger class of 
damping models which obey a certain commutativity prop- 
erty and that dissipation of this type always has a stabiliz- 
ing effect of the system. However, it has also been noted 
that arbitrary damping can destabilize systems with trans- 
fer conductances. This is an important observation because 
damping in power systems arises in small amounts from 
many different sources. There is no universally accepted 
model of dissipation and the frequently used uniform 
damping model is simply a matter of analytical conve- 
nience. 
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